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ABSTRACT

Analysis of thermal data requires the processing of large amounts of temporal image data.  The processing of the data
for quantitative information can be time intensive especially out in the field where large areas are inspected resulting in
numerous data sets.   By applying a temporal compression technique, improved algorithm performance can be obtained.
In this study, analysis techniques are applied to compressed and non-compressed thermal data. A comparison is made
based on computational speed and defect signal to noise.

Keywords:  Quantitative thermal nondestructive evaluation, file compression, improved processing time, principle
component analysis and defect signal to noise.

1. INTRODUCTION

There is a growing interest in the use of thermal methods for wide area nondestructive evaluation (NDE) because the
technology is noncontact, rapid, applicable to complex geometries, and quantitative. The technique is safe, requiring
only a small amount of heat be applied to the surface of the structure using a flash or quartz lamp heat source.  The
technology is becoming more portable for field inspections because of newly developed infrared camera and heat
source technologies.  The measurement of the surface temperature response is performed remotely using an infrared
camera. The inspection field of view is approximately 0.3 x 0.3 meters square (around 1 square foot) and because of
this large areas can be inspected rapidly.

When inspecting large areas, multiple inspection shots are scanned over the entire surface.  The recorded data set per
inspection shot consists of a set of images recorded in time with a typical sample rate of 60 Hertz, and therefore each
data set can be very large on the order of tens to hundreds of megabytes.  For example the inspection of a 1.2 x 1.8
meters square area would require a minimum of 24 inspection shots.  If one was to assemble the inspection images into
one large image this number would be slightly higher because of the required inspection overlap. Some applications
may also require inspection of the back side, if there is access, to completely document the integrity of the structure.
This would increase the total number of inspection shots by a factor of 2.  The number of inspection shots quickly add
up and results in the requirement to process large amounts of data.  Improved computational performance can result in
significant overall time savings.  This would allow the inspector in the field to more quickly obtain the inspection
results.

The objective of this paper is to investigate use of data compression techniques to enhance computational speed without
significantly decreasing defect signal to noise. Several data compression techniques are studied and include sub-
sampling, fixed window averaging, and variable window or step averaging.  The compression algorithm is applied to
the data before processing.  The data analysis algorithms used in the study for defect detection are model based fitting



for the measurement of thermal diffusivity and principle component analysis. Model based fitting is commonly used in
thermography for the quantitative detection of subsurface defects through the measurement of thermal diffusivity.1

Quantitative thermal diffusivity is measured by minimizing the squared difference between the data and a thermal
model.  Any variations due to this material property can indicate defects.  Principle component analysis (PCA) has
recently been applied for processing thermal NDE data.2  This algorithm is based on decomposition of the thermal data
into its empirical orthogonal functions.  Since thermal NDE signals are well behaved and slowly decaying waveforms,
the dominant spatial variations of the data set is usually contained in the first or second eigenvector.  In this study,
thermal data is obtained on samples with known defects and the data analysis techniques are applied to compressed and
non-compressed data. A comparison is made based on computational speed and defect signal to noise.

2. DATA COMPRESSION TECHNIQUES

Three data compression techniques are applied to the thermal data: sub-sampling, fixed window averaging, and variable
window or step averaging. The thermal data is obtained by using flash lamps located on the same side as the thermal
camera. The infrared camera is a cooled 256 x 256 focal plane InSb array operating in the 3 – 5 micrometer wavelength
band.  The acquired data sets are composed of a series of 16 bit digital images captured at 1/60 or 1/30 of a second.
Before compression, the data is offset corrected by subtracting a background frame acquired before heating. The
compression algorithm is applied to the data, before processing, to increase processing speed.

The first compression algorithm studied was sub-sampling. The data was sub-sampled by selecting every  4th and 8th

frame for compression factors of 4 and 8 respectively.  This is a basic way to reduce the number of images used for
processing and is studied for comparison to the other compression techniques.  An example sub-sampled waveform is
shown in the right plot of Figure 1 where the measured temperature response is plotted for a given pixel point.  In this
example, the sub-sampled data was produced by selecting every 8th frame.  The original signal is also shown in Figure
1.  The next compression algorithm studied is fixed window averaging.  The fixed window averaging was performed by
averaging a fixed number of frames to reduce the number of data points.  The number of frames averaged were 5, 10,
and 20.  The 5 frame averaged waveform is shown in Figure 2. This analysis technique converts the data set from 16 bit
integer to 32 bit real data to prevent summing overflow.  The last compression technique studied was variable window
averaging or step window averaging.  This technique involves increasing the window to average images in steps of 2n

and applying the window to produce the next n + 1 (for n = 0, 1, 2, 3 …) images in the compressed data set (therefore
the series would be 1, 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16 …..).  An example waveform is shown in Figure 2.

Figure 1.  Original and sub-sampled temperature response for a given pixel point in time.
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Figure 2.  Fixed window averaging (5 points) and variable window averaging temperature response.

3. SAMPLES STUDIED

Thermal NDE data was acquired on 2 samples with known defects.  The samples were a composite panel and a
reinforced carbon carbon (RCC) composite sample. The composite panel contained manufactured delamination defects
at different depths.   The delaminations were created using a rectangular stamp to form an air gap.   The quasi-isotropic
composite panel with a lay-up of [0/,45/,90/,-45/,0/,0,-45,90,45,0] was 30.5 x 30.5 centimeters in size.  The 10 ply panel
was 0.20 centimeters thick.  The delamination defect areas were square with sizes of 14.5, 6.54, 3.6, and 1.6 square
centimeters.   The inspection was performed on the backside of the sample and therefore the defects were buried at
various depths of 50, 60, 70, 80 and 90 percent of the total thickness.  The sample configuration is shown in Figure 3.
The RCC composite panel contained interior material loss defects of 15, 46, and 85 percent of the total thickness.  The
average thickness of the sample was 0.69 centimeters.  The material loss defects were circular with diameters of 1.3 and
0.65 centimeters.  The defect layout of this sample is shown in Figure 4.

Figure 3.  Defect layout configuration for composite panel with delamination defects.

1 2 3 4 5 6 7

20

30

40

50

60

70

1 2 3 4 5 6 7

20

30

40

50

60

70

Time (seconds) Time (seconds)

T
em

pe
ra

tu
re

 (
a.

 u
.)

T
em

pe
ra

tu
re

 (
a.

 u
.)

5 Point Fixed Window Average Variable Window Average

 50%  60%  70%  80% 90%

Delaminat ion
dept h is percent
of t hickness.
(t hickness =
0.20 cm)

30.5 cm



Figure 4.  Defect layout configuration for RCC composite sample with material loss defects.

4.  DATA ANALYSIS RESULTS

The various compression routines were applied to the data before applying the defect detection algorithms.  The defect
detection algorithms used were model based fitting for thermal diffusivity measurement and PCA analysis.  Model
based fitting and PCA analysis were applied to the composite panel and RCC sample data respectively.

4.1 Model Based Reduction on Composite Panel
Defect contrast can be enhanced by imaging the effective diffusivity of the sample.  This data reduction algorithm
involves fitting a theoretical 1-dimensional temperature response model with the measured temporal temperature
response pixel by pixel.1  By fitting a model with the data, noise is reduced. Uneven heating and emissivity variations
are also minimized because the fitting is based on the transient portion of the temperature response.  Parameters such as
final temperature and thermal diffusivity over the thickness squared are varied using a nonlinear fitting algorithm to
minimize the squared difference between the model and data.  If the thickness is known then the thermal diffusivity can
be calculated.   The model used for fitting the data is given in equation 1 below as:
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TS(t) is the surface temperature response, TF  is the final temperature, α  is the thermal diffusivity, l is the thickness, and
t is time.  The single side heating temperature response equation assumes no convection losses and the flash duration is
not considered instantaneous. The finite pulse time must be taken into account when doing quantitative measurements.
The flash pulse time has been previously measured to be 0.0029 seconds and to compensate for the finite time of the
flash pulse the parameter tshift  is used.3 Thermal measurements were performed on the composite panel where the
inspection parameters were 30 Hz frame rate and the number of frames grabbed were 200 for a total inspection time of
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6.67 seconds. The various compression routines were applied to the data before the model fitting data reduction
algorithm was used.  Shown in Figure 5 are the composite panel thermal diffusivity images without compression and
sub-sampled every 8th frame.  The sub-sampled thermal diffusivity image was 46.8% faster to compute. Also shown in
Figure 6 are the composite panel thermal diffusivity images with fixed window averaging of 20 frames and variable
window averaging. The fixed window averaging and the variable window average diffusivity images were 48.4% and
45.5% faster (factor of 2 speed increase) to compute respectively.

To facilitate comparison, a horizontal line plot was generated over the first row of defects (around image line 180).  The
line plots represents the average of 5 horizontal lines and this is shown in Figure 7 for the non-compressed, sub-
sampled every 8th point, and variable window average images.  From the averaged line plot, an average SNR value for
the first and third defect was calculated by taking the absolute value of the pixels over the defects minus the average of
the background pixels and dividing by the standard deviation of the background pixels.  The background pixels were
obtained by averaging pixels before and after each defect. The average background value was subtracted from the
defect value before dividing by the background standard deviation to minimize the effects of the non-flat background.
The defect averaged signal to noise values were 5.0, 2.3, 4.4, 4.4 and 4.4 for the non-compressed, sub-sampled every 8th

point, 5 point fixed window average, 20 point fixed window average, and variable window average thermal diffusivity
images respectively.  There is significant degradation in the SNR for the sub-sampled data set and very little
degradation for the averaging compression schemes.

4.2 Principle Component Analysis Reduction on RCC Sample
PCA is commonly applied for the thermal inspection of RCC. This algorithm is based on decomposition of the thermal
data into its principle components or eigenvectors.2 Singular value decomposition is a routine used to find the singular
values and corresponding eigenvectors of a matrix.  Since thermal NDE signals are well behaved and slowly decaying
waveforms, the predominant spatial variations of the entire data set are usually contained in the first or second
eigenvectors, accounting for most of the data variance.  The PCA is computed by defining a data matrix A, where the
time variations are along the columns and the spatial image pixel points are row-wise.  The matrix A can then be
decomposed as:

                                                                                     A =  U * * V TΓ                                                                      (2)

where Γ is the a diagonal matrix containing the singular values, V is an orthogonal matrix with dimensions
corresponding to the number of images or time history,  and U is an orthogonal matrix which contains the eigenvectors
describing the spatial variations, and therefore, each column of U contains the eigenvectors which can be configured to
generate the PCA image. Typically the first eigenvector PCA image provides good contrast for defect detection.
Thermal measurements were performed on the RCC sample where the inspection parameters were 60 Hz frame rate and

Figure 5.  Composite panel thermal diffusivity images without compression and sub-sampled every 8 frames.
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Figure 6.  Composite panel thermal diffusivity images with fixed window averaging and variable window averaging.

the number of frames grabbed were 670 for a total inspection time of 11.167 seconds. The PCA analysis was performed
by processing images 400 - 670.  The various compression routines were applied to the data before PCA data reduction.
The PCA data reduction was used to compute the first eigenvector image.  Shown in Figure 8 are the RCC panel PCA
images without compression and sub-sampled every 8th frame.  The sub-sampling PCA image was 88.0% faster to
compute.  This is a factor of 8 times faster.   Also shown in Figure 8 are the fixed window averaging of 10 frames and
variable window averaging PCA images. The fixed window averaging and the variable window average PCA images
were 92% and 96% faster to compute respectively and took around a few seconds to compute.  This is a factor of over
12 times improvement in computational speed.  The significant speed increase is due to the inversion of a smaller data
matrix.

A horizontal line plot was generated over the deepest defect (around image line 90).  The line plots represents the
average of 5 horizontal lines and this is shown in Figure 9.  From the averaged line plot, an average SNR value for the
deepest defect was calculated by taking the absolute value of the pixels over the defect minus the average of the
background pixels and dividing by the standard deviation of the background pixels.  The background pixels were
obtained by averaging pixels before and after the defect. The averaged background value was subtracted from the defect
value before dividing by the background standard deviation to minimize the effects of the non-flat background.  The
defect averaged signal to noise values were 1.59, 1.43, 1.57, and 1.57 for the non-compressed, sub-sampled every 8th

point, 10 point fixed window average, and variable window average PCA images respectively.  There is significant
degradation in the SNR for the sub-sampled data set and very little degradation for the averaging compression schemes.
The computational speed gained is significant for the averaged data.

Figure 7.  Comparison of horizontal line plots over the first row of defects.
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Figure 8.  Comparison of PCA images for frames 400-670.

Figure 9.  Comparison of  PCA horizontal line plots over the deepest RCC defect.

5.  CONCLUSIONS

It has been shown that by applying a temporal compression technique, improved algorithm performance can be
obtained. For the thermal diffusivity images, there is significant degradation in the SNR for the sub-sampled data set as
expected and very little degradation for the averaging compression schemes.  The fixed window averaging and the
variable window average diffusivity images provided a factor of 2 computational speed increase with little loss in defect
contrast.  The computational speed gained is even more significant when using the PCA analysis for the fixed window
and variable window averaged data. The significant speed increase is due to the reduced time required to invert a
smaller data matrix.  There was also little SNR degradation in the PCA images when using both the fixed and variable
window averaging compression schemes.  The variable window averaging routine would be more practical since the
compressed thermal data would more suited for defect depth estimation since the early time history is preserved.
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